
Mathematical Methods for Physicists, FK7048, fall 2018
Exercise sheet 8, due monday october 29th, 10:00

This is a hard deadline since we want to have the possibility to discuss hand-in problems at the lecture.
We will not accept hand-ins after this deadline. Email your nice solutions to Eddy (ardonne@fysik.su.se).
Remember to write your email address on the top of the first page of your solutions! Scanned solutions
will be accepted if, and only if, the quality is good enough to be read and corrected. Please submit
solutions in electronic form in one PDF file only.
Total amount of points: 13 p + 1 bp.

1 The Basel problem

The purpose of this exercise is to calculate the sum of the following (converging) series by different
methods:

S =

+∞∑
n=1

1

n2
(1)

(a) (1p) As seen in class, apply the residue theorem toan appropriate function with an appropriate
contour.

You can construct a 2π-periodic function f over R by defining it on a period, for instance the interval
]− π, π]. Then you are allowed to expand f in Fourier series.

(b) (1p) Take f(x) = x on ]− π, π] and apply Parseval’s theorem to find S.

(c) (1p) Take f(x) = x2 on ]− π, π] and apply Dirichlet’s theorem in a particular point to get S.

2 Retarded potentials

Let � = 1
c2 ∂

2
t −∆ be the D’Alembertian in 3D, V (r, t) the electric potential, A(r, t) the magnetic vector

potential, ρ(r, t) the charge density and j(r, t) the electric current density. One can show that Maxwell’s
equations in the Lorenz1gauge are equivalent to wave equations with source terms:

1

c2
∂V

∂t
+ ∇ ·A = 0 (2)

� A = µ0j (3)

� V =
ρ

ε0
(4)

(a) (2p) Calculate the retarded Green’s function G(r, t; r′, t′) of the D’Alembertian using a space-time
Fourier transform defined as follows for functions2 f ∈ L2(R4):

f̂(k, ω) =
1

(2π)2

∫
R4

f(r, t) e−i(k·r−ωt) d3r dt (5)

f(r, t) =
1

(2π)2

∫
R4

f̂(k, ω) ei(k·r−ωt) d3k dω (6)

Hints: - Actually G(r, t; r′, t′) = G(r − r′, t− t′), moreover one can take r′ = 0 and t′ = 0 during
the calculation. Justify this.
- When inverting the Fourier transform in time, choose your contour so that G(r, t) = 0 for t ≤ 0.
Justify this choice.

1Note that the name is spelled correctly, this gauge is due to Lorenz, the transformations are due to Lorentz.
2Fourier transformation is an isomorphism only on Schwartz spaces and by a subtle extension to L2 spaces, however the

Fourier inversion formula also holds if the function and its Fourier transform both belong to an L1 space. In a nutshell, be
always careful when inverting a Fourier transform!
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(b) (0.5p) Infer the so-called retarded potentials:

V (r, t) =
1

4πε0

∫
R3

ρ
(
r′, t− |r−r

′|
c

)
|r − r′|

d3r′ (7)

A(r, t) =
µ0

4π

∫
R3

j
(
r′, t− |r−r

′|
c

)
|r − r′|

d3r′ (8)

3 Laplace transform of the sine cardinal

Let L be the Laplace transformation.

(a) (1p) Show that:

L
(

sinh(at)

at

)
(x) =

1

a
coth−1

(
x

a

)
(9)

Hint: You know L
(

sinh(at)
a

)
(x) = 1

s2−a2 .

(b) (0.5p) Use the result of the previous question to deduce that:

L
(

sin(at)

at

)
(x) =

1

a
cot−1

(
x

a

)
(10)

4 On the Schrödinger equation

The three-dimensional, time-independent Schrödinger equation can, after a rescaling of the energy E =
~2

2mε and potential V = ~2

2mU , be written as:

−∆ψ(x, y, z) + U(x, y, z) ψ(x, y, z) = ε ψ(x, y, z) (11)

where ∆ is the Laplacian. For central potentials, it is interesting to use spherical coordinates. Then, one
can show that solutions are of the form ψ(r, θ, ϕ) = R(r) Ylm(θ, ϕ) where Ylm are the spherical harmonics
and the radial function satisfies the following 2nd order linear ODE:

− 1

r2
d

dr

(
r2
dR

dr

)
+

(
l(l + 1)

r2
+ U(r)

)
R(r) = ε R(r) (12)

(a) (1p) The free particle has a constant potential energy which one can always take equal to zero. For
U = 0, show that the only physical solution of (12) is R(r) = jl(

√
εr) where jl is a spherical Bessel

function of first kind.

(b) (2p) Using Rodrigues formula, show from the representation of spherical Bessel functions of first
kind, namely

jl(ρ) =
ρl

2l+1l!

∫ 1

−1
eiρs (1− s2)l ds (13)

that their link with the Legendre polynomials Pl:

jl(ρ) =
1

2il

∫ 1

−1
eiρs Pl(s) ds (14)

(c) (1p) For U = 0, obtain the 3D plane wave solution of (11).

(d) Bonus: (1 bp) Justify the dispersion relation of the 3D plane waves: E = (~k)2
2m . Moreover, a

dispersion relation is normally a relation between the angular frequency ω and the wave number k
then why is the previous relation named dispersion relation?
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In the rescaled variables, one identifies ε = k2. So far, you have got two sets of orthogonal functions
solutions of (11): the plane waves parametrized by k (infinitely uncountable set) and the functions
jl(kr) Ylm(θ, ϕ) parametrized by l and m (infinitely countable set). Let us now find the relation between
those two sets:

eik·r =

+∞∑
l=0

l∑
m=−l

clm(k) jl(kr) Ylm(θ, ϕ) (15)

where r = (x, y, z). Basically, we are looking for coefficients clm(k).

(e) (0.5p) Justify that the left-hand side of (15) does not depend on ϕ and that in fact:

eik·r =

+∞∑
l=0

c̃l(k) jl(kr) Pl
(

cos(θ)
)

(16)

(f) (1.5p) Find the coefficients c̃l(k) using the orthogonality of Legendre polynomials; be careful with
the variables of integration. You should eventually get the the fantastic relation:

eik·r =

+∞∑
l=0

(2l + 1) il jl(kr) Pl
(

cos(θ)
)

(17)
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