This is a hard deadline since we want to have the possibility to discuss hand-in problems at the lecture. We will not accept hand-ins after this deadline. Email your nice solutions to Eddy (ardonne@fysik.su.se). Remember to write your email address on the top of the first page of your solutions! Scanned solutions will be accepted if, and only if, the quality is good enough to be read and corrected. Please submit solutions in electronic form in one PDF file only.
Total amount of points: $13 \mathrm{p}+2 \mathrm{bp}$.

1 Green's functions

In this problem, f is an arbitrary real-valued continuous function, unless stated otherwise.
(a) (1p) Consider the following 2 nd order inhomogenous ODE with constant coefficients:

$$
\begin{equation*}
a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=f(x) \quad(a, b, c) \in \mathbb{C}^{3} \tag{1}
\end{equation*}
$$

This equation is not self-adjoint. Show that the Green's function associated to (1) and the boundary conditions $y\left(x_{1}\right)=y\left(x_{2}\right)=0$ still satisfies some continuity and discontinuity conditions. Which main property that Green's functions for adjoint problems satisfy is lost? Which condition on (1) should you impose to have this property?
(b) (1p) Construct the Green's function associated to the following initial value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)+2 y^{\prime}(x)+y(x)=f(x) \tag{2}\\
y(0)=0 \text { and } y^{\prime}(0)=0
\end{array}\right.
$$

Assume that the continuity and discontinuity conditions established in the previous question also hold for this kind of homogeneous boundary conditions. Give the final expression for $y(x)$ in terms of f.
(c) (2p) Construct the Green's function associated to the following boundary value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)+y^{\prime}(x)-2 y(x)=f(x) \tag{3}\\
y(0)=0 \quad \text { and } \quad y^{\prime}(\log 2)=0
\end{array}\right.
$$

Use the Green's function you found to solve the ODE in the case that $f(x)=10$. Do not forget to check your solution!
(d) (1p) Solve the same ODE as in (c), but now with the boundary conditions $y(0)=1, y^{\prime}(\log 2)=2$, but still with $f(x)=10$.
Hint: you can consider $y(x)+a x+b$ to obtain a problem with homogeneous boundary conditions, but there is a simpler/faster method.

2 Complex integrals with a branch cut

(a) (1p) What is a branch cut? What is a branch point? Is the complex logarithm continuous in the complex plane? The same question for the function $z \rightarrow z^{\alpha}, \alpha \in[0,+\infty[$.
(b) Consider the following integral:

$$
\begin{equation*}
I=\int_{0}^{+\infty} \frac{d x}{x^{\alpha}(x+p)} \tag{4}
\end{equation*}
$$

(b1) (0.5p) For which values of α does this integral converge?
(b2) (2p) Using the contour of the figure 11.26 from the book, show that $I=\Gamma(\alpha) \Gamma(1-\alpha) p^{-\alpha}$.
(c) Consider the following integral:

$$
\begin{equation*}
J=\int_{0}^{+\infty} \frac{\log (x)}{a^{2}+x^{2}} \quad \text { for } \quad a \in[0,+\infty[\tag{5}
\end{equation*}
$$

(c1) (0.5p) What is $\log (x)$ for $x \in]-\infty, 0[$ where \log is principal determination of the complex logarithm?
(c2) (2p) Use a contour in the upper complex plane (exclusively) dealing with the branch cut of Log to compute J. What happens when $a=0$? Can you show this without using your result for the integral?

3 Gamma and Zeta functions in physics

(a) (1p) Compute the moments of the Bose-Einstein distribution for $n \in \mathbb{N}^{\star}$:

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{x^{n}}{e^{x}-1} d x=n!\zeta(n+1) \tag{6}
\end{equation*}
$$

Hint: Use the following series expansion for a suitable X :

$$
\begin{equation*}
\frac{1}{1-X}=\sum_{p=0}^{+\infty} X^{p} \quad \text { provided that }|X|<1 \tag{7}
\end{equation*}
$$

(b) (1p) Infer the moments of the Fermi-Dirac distribution for $n \in \mathbb{N}^{\star}$:

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{x^{n}}{e^{x}+1} d x=\left(1-\frac{1}{2^{n}}\right) n!\zeta(n+1) \tag{8}
\end{equation*}
$$

Hint: One way to solve the this problem is to note that $e^{x}-1=\left(e^{\frac{x}{2}}\right)^{2}-1$.

4 Bonus: the volume of hyperballs

In physics, we often need to compute N-dimensional integrals with spherical symmetry. For instance let f be a real-valued integrable function, then:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(\sqrt{\sum_{i=1}^{N} x_{i}^{2}}\right) \prod_{i=1}^{N} d x_{i} \equiv \int_{0}^{+\infty} f(r) d\left(a_{N} r^{N}\right) \tag{9}
\end{equation*}
$$

where $a_{N} r^{N}$ is the hypervolume of the N-dimensional hyperball. We have simply passed from Cartesian to spherical coordinates and we wish to calculate the coefficient a_{N}. To do that, a nice idea is to choose f as the Gaussian i.e. $f(r)=e^{-r^{2}}$.
(a) $(0.5 \mathrm{bp})$ For this choice of f, you can factorize the left-hand side of 99 . Show it is equal to $\pi^{\frac{N}{2}}$.
(b) (1 bp) By a straighforward change of variables, show that the right-hand side of 9 is equal to $a_{N} \Gamma\left(\frac{N}{2}+1\right)$ for this choice of f.
(c) (0.5 bp) Deduce the value of a_{N} and verify that a_{1}, a_{2} and a_{3} take the familiar values. What is the geometrical meaning of $d\left(a_{N} r^{N}\right)$?

