Properties of the Dirac distribution

October 6, 2018

1 Definition of the Dirac distribution by an integral over $[0, +\infty)$

Let f be a test function ; e.g. it can be a function with a finite support¹ or a Schwartz' function². The Dirac distribution is usually defined by an integral over \mathbb{R} :

$$\int_{-\infty}^{+\infty} f(x)\delta(x)dx \triangleq f(0) \tag{1}$$

In fact, the integration can be restricted to integral with contains 0. More generally, the function is evaluated at the point where the Dirac peak is located :

$$\int_{x_1}^{x_3} \delta(x - x_2) \, dx = 1, \quad \text{with} \quad x_1 < x_2 < x_3 \tag{2}$$

We are going to show that the Dirac distribution can also be defined by an integral over $[0, +\infty)$.

$$\begin{split} f(0) &= \int_{-\infty}^{+\infty} f(x)\delta(x)dx = \int_{0}^{+\infty} f(x)\delta(x)dx + \int_{-\infty}^{0} f(x)\delta(x)dx = \int_{0}^{+\infty} \left\{ f(x)\delta(x) + f(-x)\delta(-x) \right\} dx \\ &= \int_{0}^{+\infty} \left\{ f(x) + f(-x) \right\} \delta(x)dx \equiv \begin{cases} 2\int_{0}^{+\infty} f(x)\delta(x)dx & \text{if } f \text{ is even} \\ 0 & \text{if } f \text{ is odd} \end{cases} \end{split}$$

NB : $\delta(-x) = \delta(x)$ is a only formal identity, because δ is not a function.

Any function can be decomposed in an even part and an odd part³ : $f \equiv E + O$ with E(-x) = E(x) and O(-x) = -O(x). We have just shown that the odd part does not contribute to the definition (1), the reason being O(0) = 0. Then, one can actually define the Dirac distribution as follows :

$$\int_{0}^{+\infty} f(x)\delta(x)dx \cong \frac{f(0)}{2}$$
(5)

One immediately infers the following useful identities :

$$\int_0^1 \delta(x) \, dx = \frac{1}{2} \tag{6}$$

$$\int_{0}^{a} \delta(x-a) \, dx = \frac{1}{2} \tag{7}$$

$$\int_{0}^{+\infty} e^{ikx} \delta(x) dx = \frac{1}{2}$$
(8)

¹The support of a function is the part of its domain where it is non-zero.

$$E(x) \triangleq \frac{f(x) + f(-x)}{2} \tag{3}$$

$$O(x) \triangleq \frac{f(x) - f(-x)}{2} \tag{4}$$

²A smooth function whose all derivatives are rapidly decreasing.

Figure 1: Contour γ

 $x \mapsto e^{ikx}$ does not have a finite support and is not a Schwartz' function neither. However, equation (8) can be derived independently :

Proof. (8): We use a nice representation of the Dirac distribution :

$$\delta(x) = \lim_{\epsilon \to 0} \frac{1}{\sqrt{2\pi\epsilon}} e^{\frac{-x^2}{2\epsilon}}$$
(9)

One can show that permutation of the limit with the integral is allowed. Then,

$$\int_{0}^{+\infty} e^{ikx} \delta(x) dx = \lim_{\epsilon \to 0} \frac{1}{\sqrt{2\pi\epsilon}} \int_{0}^{+\infty} e^{\frac{-x^2}{2\epsilon} + ikx} dx = \lim_{\epsilon \to 0} \frac{1}{\sqrt{2\pi\epsilon}} e^{-\frac{k^2\epsilon}{2}} \int_{0}^{+\infty} e^{\frac{1}{2\epsilon}(x+ik)^2} dx \tag{10}$$

Applying Cauchy integral theorem to the contour γ (see Figure 1), one gets :

$$\int_{0}^{+\infty} e^{\frac{1}{2\epsilon}(x+ik)^{2}} dx = \int_{0}^{+\infty} e^{\frac{x^{2}}{2\epsilon}} dx = \sqrt{2\epsilon} \frac{\sqrt{\pi}}{2}$$
(11)

In the end,

$$\int_{0}^{+\infty} e^{ikx} \delta(x) dx = \lim_{\epsilon \to 0} \frac{1}{\sqrt{2\pi\epsilon}} e^{-\frac{k^2\epsilon}{2}} \sqrt{2\epsilon} \frac{\sqrt{\pi}}{2} dx = \frac{1}{2} \lim_{\epsilon \to 0} e^{-\frac{k^2\epsilon}{2}} \equiv \frac{1}{2}$$
(12)

2 A few identities

Here are a few more identities (g is a differentiable real-valued function) :

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - x_i)}{|g'(x_i)|}, \quad \text{with} \quad g(x_i) = 0$$
(13)

$$\int_{-\infty}^{+\infty} e^{ikx} dk = 2\pi \,\delta(x) \tag{14}$$

$$\int_{0}^{+\infty} \cos(kx) dk = \pi \,\delta(x) \tag{15}$$

$$\int_{0}^{+\infty} e^{ikx} dk = \pi \,\delta(x) \tag{16}$$

(13) and (14) are standard. They can be derived as follows :

Proof. (13) : For any test function f, the integral

$$\int_{-\infty}^{+\infty} \delta(g(x)) f(x) dx \tag{17}$$

is roughly the evaluation of f at points where g is equal to 0. For the sake of simplicity, let us assume that g has only one SIMPLE zero denoted x_0 and perform the change of variable

$$u - x_0 = g(x) \quad \Rightarrow \quad dx = \frac{du}{g'(x)}$$
(18)

which is such that when $u = x_0$, g(x) = 0 and so $x = x_0$. It suits perfectly with the essence of the Dirac delta. In addition, we will have to take the absolute value of the Jacobian $\frac{1}{g'(x)}$ and a priori write $x = g^{-1}(u)$ in order to get a proper integration with respect to the variable u. However, there is $\delta(u - x_0)$ in the integrand meaning that u can be replaced everywhere by x_0 or equivalently x can be replaced everywhere by x_0 . In the end, this gives :

$$\int_{-\infty}^{+\infty} \delta(g(x)) f(x) dx = \int_{-\infty}^{+\infty} \delta(u - x_0) f(u) \frac{du}{|g'(x_0)|} \equiv \frac{f(x_0)}{|g'(x_0)|}$$
(19)

Note that $g'(x_0) \neq 0$ since x_0 is a SIMPLE of g. It appears that if g has a zero with a multiplicity, then $\delta(g(x))$ does not make any sense.

When g has several zeros, one simply splits \mathbb{R} into intervalles containing one zero each.

Proof. (14) : Let us define the Fourier transformation and the inverse Fourier transformation for suitable functions or distributions g and h.

$$\mathcal{F}(g)(k) \cong \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-ikx} dx$$
(20)

$$\mathcal{F}^{-1}(h)(x) \triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} h(k) e^{ikx} dk$$
(21)

It is obvious that :

$$\mathcal{F}(\delta)(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \delta(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}}$$
(22)

One can show that the Dirac distribution belongs to a space for which \mathcal{F}^{-1} is indeed the reciprocal transformation of \mathcal{F} . Therefore :

$$\delta = \left(\mathcal{F}^{-1} \circ \mathcal{F}\right)(\delta) \quad \Rightarrow \quad \delta(x) = \mathcal{F}^{-1}\left(\frac{1}{\sqrt{2\pi}}\right)(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx} dk \tag{23}$$

A simple way to get identity (15) is to notice that $\delta(x)$ is real. Then, take the real part of (14) and use the parity of cosine :

$$\int_{-\infty}^{+\infty} \cos(kx) dk = 2\pi \,\delta(x) \quad \Leftrightarrow \quad \int_{0}^{+\infty} \cos(kx) dk = \pi \,\delta(x) \tag{24}$$

Note that cosine is not integrable over \mathbb{R} , thus it is not surprising that its integration leads to a distribution instead of a function. Sine is not integrable neither over an infinite domain, nonetheless due to its parity it is clear that :

$$\int_{-\infty}^{+\infty} \sin(kx) dk = 0 \tag{25}$$

We eventually provide an independent derivation of (15) :

Proof. (15): We define for $\epsilon > 0$ the function δ_{ϵ} (see figure 2) as :

$$\delta_{\epsilon}(x) = \begin{cases} \frac{1}{\epsilon} & \text{if } |x| < \frac{\epsilon}{2} \\ 0 & \text{otherwise} \end{cases}$$
(26)

One can show that $\lim_{\epsilon \to 0} \delta_{\epsilon} = \delta$ moreover δ_{ϵ} is a function with a finite support so that :

$$\forall \epsilon > 0, \quad \delta_{\epsilon} = \left(\mathcal{F}^{-1} \circ \mathcal{F}\right)(\delta_{\epsilon}) \Rightarrow \quad \delta_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathcal{F}(\delta_{\epsilon})(k) e^{ikx} dk \tag{27}$$

Figure 2: Function δ_{ϵ}

Hence, let us compute the Fourier transform of δ_ϵ :

$$\mathcal{F}(\delta_{\epsilon})(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \delta_{\epsilon}(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi\epsilon}} \int_{-\frac{\epsilon}{2}}^{\frac{\epsilon}{2}} e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \frac{e^{\frac{ik\epsilon}{2}} - e^{-\frac{ik\epsilon}{2}}}{ik\epsilon} \equiv \frac{1}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right)$$
(28)

where we used Euler formula for sine and recognized sine cardinal $\operatorname{sinc}(x) \triangleq \frac{\sin(x)}{x}$. Plugging this result in (27) and taking the limit ϵ going to 0 gives :

$$\delta(x) = \lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right) e^{ikx} dk = \lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right) \cos(kx) dk + i \lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right) \sin(kx) dk$$

Sine cardinal is an even function so that its integral with sine is zero and its integral with cosine can be restricted to the range $[0, +\infty)$ with a factor 2. Thus,

$$\delta(x) = \lim_{\epsilon \to 0} \frac{1}{\pi} \int_0^{+\infty} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right) \cos(kx) dk = \frac{1}{\pi} \int_0^{+\infty} \lim_{\epsilon \to 0} \operatorname{sinc}\left(\frac{k\epsilon}{2}\right) \cos(kx) dk = \frac{1}{\pi} \int_0^{+\infty} \cos(kx) dk \quad (29)$$

Once again, one can show that permutation of the limit with the integral is allowed. We made use of the well-known limit $\lim_{x\to 0} \operatorname{sinc}(x) = 1$.

Identity (16) turns out to be true even though its derivation is elusive. The reason for this is that, (15) being rigorously proved, it is equivalent to state the following :

$$\int_{-\infty}^{0} \sin(kx)dk = \int_{0}^{+\infty} \sin(kx)dk = 0$$
(30)

It means that infinity is considered as an infinitely countable number of periods, no matter the size x of the period. One obtains zero because the integral vanishes over one period.

Some people actually consider (16) as a convention. Basically, it is always possible to use (14) or (15) instead.