Properties of the Dirac distribution

October 6, 2018

1 Definition of the Dirac distribution by an integral over [0,+o[

Let f be a test function ; e.g. it can be a function with a finite suppor ${ }^{11}$ or a Schwartz' function ${ }^{2}$ The Dirac distribution is usually defined by an integral over \mathbb{R} :

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x) \delta(x) d x \triangleq f(0) \tag{1}
\end{equation*}
$$

In fact, the integration can be restricted to integral with contains 0 . More generally, the function is evaluated at the point where the Dirac peak is located :

$$
\begin{equation*}
\int_{x_{1}}^{x_{3}} \delta\left(x-x_{2}\right) d x=1, \quad \text { with } \quad x_{1}<x_{2}<x_{3} \tag{2}
\end{equation*}
$$

We are going to show that the Dirac distribution can also be defined by an integral over $[0,+\infty[$.

$$
\begin{aligned}
f(0) & =\int_{-\infty}^{+\infty} f(x) \delta(x) d x=\int_{0}^{+\infty} f(x) \delta(x) d x+\int_{-\infty}^{0} f(x) \delta(x) d x=\int_{0}^{+\infty}\{f(x) \delta(x)+f(-x) \delta(-x)\} d x \\
& =\int_{0}^{+\infty}\{f(x)+f(-x)\} \delta(x) d x \equiv \begin{cases}2 \int_{0}^{+\infty} f(x) \delta(x) d x \text { if } f \text { is even } \\
0 & \text { if } f \text { is odd }\end{cases}
\end{aligned}
$$

$\mathrm{NB}: \delta(-x)=\delta(x)$ is a only formal identity, because δ is not a function.
Any function can be decomposed in an even part and an odd par ${ }^{3}: f \equiv E+O$ with $E(-x)=E(x)$ and $O(-x)=-O(x)$. We have just shown that the odd part does not contribute to the definition (1), the reason being $O(0)=0$. Then, one can actually define the Dirac distribution as follows :

$$
\begin{equation*}
\int_{0}^{+\infty} f(x) \delta(x) d x \triangleq \frac{f(0)}{2} \tag{5}
\end{equation*}
$$

One immediately infers the following useful identities :

$$
\begin{align*}
& \int_{0}^{1} \delta(x) d x=\frac{1}{2} \tag{6}\\
& \int_{0}^{a} \delta(x-a) d x=\frac{1}{2} \tag{7}\\
& \int_{0}^{+\infty} e^{i k x} \delta(x) d x=\frac{1}{2} \tag{8}
\end{align*}
$$

[^0]

Figure 1: Contour γ
$x \mapsto e^{i k x}$ does not have a finite support and is not a Schwartz' function neither. However, equation (8) can be derived independently :

Proof. 88: We use a nice representation of the Dirac distribution :

$$
\begin{equation*}
\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi \epsilon}} e^{\frac{-x^{2}}{2 \epsilon}} \tag{9}
\end{equation*}
$$

One can show that permutation of the limit with the integral is allowed. Then,

$$
\begin{equation*}
\int_{0}^{+\infty} e^{i k x} \delta(x) d x=\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi \epsilon}} \int_{0}^{+\infty} e^{\frac{-x^{2}}{2 \epsilon}+i k x} d x=\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi \epsilon}} e^{-\frac{k^{2} \epsilon}{2}} \int_{0}^{+\infty} e^{\frac{1}{2 \epsilon}(x+i k)^{2}} d x \tag{10}
\end{equation*}
$$

Applying Cauchy integral theorem to the contour γ (see Figure 1, one gets :

$$
\begin{equation*}
\int_{0}^{+\infty} e^{\frac{1}{2 \epsilon}(x+i k)^{2}} d x=\int_{0}^{+\infty} e^{\frac{x^{2}}{2 \epsilon}} d x=\sqrt{2 \epsilon} \frac{\sqrt{\pi}}{2} \tag{11}
\end{equation*}
$$

In the end,

$$
\begin{equation*}
\int_{0}^{+\infty} e^{i k x} \delta(x) d x=\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi \epsilon}} e^{-\frac{k^{2} \epsilon}{2}} \sqrt{2 \epsilon} \frac{\sqrt{\pi}}{2} d x=\frac{1}{2} \lim _{\epsilon \rightarrow 0} e^{-\frac{k^{2} \epsilon}{2}} \equiv \frac{1}{2} \tag{12}
\end{equation*}
$$

2 A few identities

Here are a few more identities (g is a differentiable real-valued function) :

$$
\begin{align*}
& \delta(g(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}, \quad \text { with } g\left(x_{i}\right)=0 \tag{13}\\
& \int_{-\infty}^{+\infty} e^{i k x} d k=2 \pi \delta(x) \tag{14}\\
& \int_{0}^{+\infty} \cos (k x) d k=\pi \delta(x) \tag{15}\\
& \int_{0}^{+\infty} e^{i k x} d k=\pi \delta(x) \tag{16}
\end{align*}
$$

(13) and 14 are standard. They can be derived as follows :

Proof. 13) : For any test function f, the integral

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \delta(g(x)) f(x) d x \tag{17}
\end{equation*}
$$

is roughly the evaluation of f at points where g is equal to 0 . For the sake of simplicity, let us assume that g has only one SIMPLE zero denoted x_{0} and perform the change of variable

$$
\begin{equation*}
u-x_{0}=g(x) \quad \Rightarrow \quad d x=\frac{d u}{g^{\prime}(x)} \tag{18}
\end{equation*}
$$

which is such that when $u=x_{0}, g(x)=0$ and so $x=x_{0}$. It suits perfectly with the essence of the Dirac delta. In addition, we will have to take the absolute value of the Jacobian $\frac{1}{g^{\prime}(x)}$ and a priori write $x=g^{-1}(u)$ in order to get a proper integration with respect to the variable u. However, there is $\delta\left(u-x_{0}\right)$ in the integrand meaning that u can be replaced everywhere by x_{0} or equivalently x can be replaced everywhere by x_{0}. In the end, this gives :

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \delta(g(x)) f(x) d x=\int_{-\infty}^{+\infty} \delta\left(u-x_{0}\right) f(u) \frac{d u}{\left|g^{\prime}\left(x_{0}\right)\right|} \equiv \frac{f\left(x_{0}\right)}{\left|g^{\prime}\left(x_{0}\right)\right|} \tag{19}
\end{equation*}
$$

Note that $g^{\prime}\left(x_{0}\right) \neq 0$ since x_{0} is a SIMPLE of g. It appears that if g has a zero with a multiplicity, then $\delta(g(x))$ does not make any sense. When g has several zeros, one simply splits \mathbb{R} into intervalles containing one zero each.

Proof. 14 : Let us define the Fourier transformation and the inverse Fourier transformation for suitable functions or distributions g and h.

$$
\begin{align*}
\mathcal{F}(g)(k) & \triangleq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} g(x) e^{-i k x} d x \tag{20}\\
\mathcal{F}^{-1}(h)(x) & \triangleq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h(k) e^{i k x} d k \tag{21}
\end{align*}
$$

It is obvious that:

$$
\begin{equation*}
\mathcal{F}(\delta)(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \delta(x) e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}} \tag{22}
\end{equation*}
$$

One can show that the Dirac distribution belongs to a space for which \mathcal{F}^{-1} is indeed the reciprocal transformation of \mathcal{F}. Therefore :

$$
\begin{equation*}
\delta=\left(\mathcal{F}^{-1} \circ \mathcal{F}\right)(\delta) \Rightarrow \delta(x)=\mathcal{F}^{-1}\left(\frac{1}{\sqrt{2 \pi}}\right)(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i k x} d k \tag{23}
\end{equation*}
$$

A simple way to get identity 15 is to notice that $\delta(x)$ is real. Then, take the real part of 14) and use the parity of cosine :

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \cos (k x) d k=2 \pi \delta(x) \quad \Leftrightarrow \quad \int_{0}^{+\infty} \cos (k x) d k=\pi \delta(x) \tag{24}
\end{equation*}
$$

Note that cosine is not integrable over \mathbb{R}, thus it is not surprising that its integration leads to a distribution instead of a function. Sine is not integrable neither over an infinite domain, nonetheless due to its parity it is clear that:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \sin (k x) d k=0 \tag{25}
\end{equation*}
$$

We eventually provide an independent derivation of 15) :
Proof. 15: We define for $\epsilon>0$ the function δ_{ϵ} (see figure 2) as :

$$
\delta_{\epsilon}(x)= \begin{cases}\frac{1}{\epsilon} & \text { if }|x|<\frac{\epsilon}{2} \tag{26}\\ 0 & \text { otherwise }\end{cases}
$$

One can show that $\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}=\delta$ moreover δ_{ϵ} is a function with a finite support so that :

$$
\begin{equation*}
\forall \epsilon>0, \quad \delta_{\epsilon}=\left(\mathcal{F}^{-1} \circ \mathcal{F}\right)\left(\delta_{\epsilon}\right) \Rightarrow \quad \delta_{\epsilon}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathcal{F}\left(\delta_{\epsilon}\right)(k) e^{i k x} d k \tag{27}
\end{equation*}
$$

Figure 2: Function δ_{ϵ}

Hence, let us compute the Fourier transform of δ_{ϵ} :

$$
\begin{equation*}
\mathcal{F}\left(\delta_{\epsilon}\right)(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \delta_{\epsilon}(x) e^{-i k x} d x=\frac{1}{\sqrt{2 \pi} \epsilon} \int_{-\frac{\epsilon}{2}}^{\frac{\epsilon}{2}} e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}} \frac{e^{\frac{i k \epsilon}{2}}-e^{-\frac{i k \epsilon}{2}}}{i k \epsilon} \equiv \frac{1}{\sqrt{2 \pi}} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) \tag{28}
\end{equation*}
$$

where we used Euler formula for sine and recognized sine cardinal $\operatorname{sinc}(x) \hat{=} \frac{\sin (x)}{x}$. Plugging this result in 27 and taking the limit ϵ going to 0 gives :
$\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) e^{i k x} d k=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) \cos (k x) d k+i \lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) \sin (k x) d k$
Sine cardinal is an even function so that its integral with sine is zero and its integral with cosine can be restricted to the range $[0,+\infty$ [with a factor 2 . Thus,

$$
\begin{equation*}
\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \int_{0}^{+\infty} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) \cos (k x) d k=\frac{1}{\pi} \int_{0}^{+\infty} \lim _{\epsilon \rightarrow 0} \operatorname{sinc}\left(\frac{k \epsilon}{2}\right) \cos (k x) d k=\frac{1}{\pi} \int_{0}^{+\infty} \cos (k x) d k \tag{29}
\end{equation*}
$$

Once again, one can show that permutation of the limit with the integral is allowed. We made use of the wellknown limit $\lim _{x \rightarrow 0} \operatorname{sinc}(x)=1$.

Identity (16) turns out to be true even though its derivation is elusive. The reason for this is that, 15 being rigorously proved, it is equivalent to state the following :

$$
\begin{equation*}
\int_{-\infty}^{0} \sin (k x) d k=\int_{0}^{+\infty} \sin (k x) d k=0 \tag{30}
\end{equation*}
$$

It means that infinity is considered as an infinitely countable numeber of periods, no matter the size x of the period. One obtains zero because the integral vanishes over one period.
Some people actually consider (16) as a convention. Basically, it is always possible to use (14) or (15) instead.

[^0]: ${ }^{1}$ The support of a function is the part of its domain where it is non-zero.
 ${ }_{3}^{2} \mathrm{~A}$ smooth function whose all derivatives are rapidly decreasing.
 ${ }_{3}$

 $$
 \begin{align*}
 & E(x) \triangleq \frac{f(x)+f(-x)}{2} \tag{3}\\
 & O(x) \triangleq \frac{f(x)-f(-x)}{2} \tag{4}
 \end{align*}
 $$

