# FK7048 - Mathematical Methods in Physics <br> Exam 2018-11-02, 08:00-13:00 

Allowed help:
the notes you made during the lectures/tutorials and the lecture/tutorial notes that are posted on the course website. The course book, Arfken, Weber, Harris: Mathematical Methods for Physicists. In case you use an electronic copy of the book and/or lecture/tutorial notes, the only program that you are allowed to use on your device is a pdf reader with the above mentioned material available. All other programs/apps should be closed. Mobile phones are under no circumstances allowed!
First read the whole exam, and start with the exercises you think you'll be able to best!
If you use a theorem in the solution of a problem, this should be stated explicitly. If you use a result from the book, you should give a clear reference, such as an equation number.
Good luck! Eddy Ardonne

1. The $2 \pi$-periodic function $f(x)$ is defined by specifying $f(x)$ on the interval $-\pi<x<\pi$ as $f(x)=0$ for $-\pi<x \leq 0$ and $f(x)=x$ for $0 \leq x<\pi$.
(a) (4p) Express $f(x)$ in terms of a Fourier series.
(b) (1p) Show that $\frac{\pi^{2}}{8}=\sum_{k=1}^{+\infty} \frac{1}{(2 k-1)^{2}}$.
2. (5p) Use the contour integration method to evaluate the integral $\int_{0}^{+\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x$ where $a$ is an arbitrary real parameter.
3. We consider the following differential equation:

$$
x y^{\prime \prime}(x)+(3-x) y^{\prime}(x)-y(x)=0 .
$$

(a) (1p) Determine all the singular points of this equation, and their nature.
(b) (4p) Use Frobenius' method to determine the general solution of this differential equation.
4. We assume that the amplitude $u(r, t)$ of a circular drum with radius $a$ does not depend on the polar angle $\phi$. The edge of the drum is held fixed, $u(a, t)=0$. The amplitude is described by the wave equation in polar coordinates,

$$
\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \phi^{2}} .
$$

(a) (4p) Find the general solution of the wave equation for $u(r, t)$, by separation of variables, for the given boundary condition. Denote the $m^{\text {th }}$ zero of the Bessel function $J_{\nu}(x)$ by $\alpha_{m, \nu}$.
(b) (1p) We now also impose the boundary conditions $u(r, 0)=J_{0}\left(\alpha_{2,0} r / a\right)$ and $\left.\frac{\partial u(r, t)}{\partial t}\right|_{t=0}=$ 0 . Find the solution for this case.
5. Two identical, frictionless pendulums are coupled by a spring. It is given that the equations of motion, in the small amplitude limit, are given by ( $\alpha=g / l$ and $\beta=k / m$ )

$$
\ddot{x}(t)+\alpha x(t)+\beta(x(t)-y(t))=0 \quad \ddot{y}(t)+\alpha y(t)-\beta(x(t)-y(t))=0 .
$$

The initial conditions are $x(0)=0, \dot{x}(0)=v_{0}$, and $y(0)=0, \dot{y}(0)=0$.
(a) (4p) Solve the equations of motion for the given boundary conditions, using the Laplace transform method.
(b) (1p) Does, for generic parameters, the system come back to its configuration at $t=0$ ? If so, at what time does this happen for the first time? If not, why not? Hint: start by looking at $\dot{x}(t)$.
6. The one-dimensional time-independent Schrödinger equation for the wave function $\psi(x)$ of a particle in a (finite) potential can be written as $-\psi^{\prime \prime}(x)+U(x) \psi(x)=\epsilon \psi(x)$ where $U(x)$ and $\epsilon$ are the rescaled potential and energy (i.e., in units of $\frac{\hbar^{2}}{2 m}$ ).
A bound state is a state of energy $\epsilon$ such that $\epsilon<\lim _{x \rightarrow-\infty} U(x)$ and $\epsilon<\lim _{x \rightarrow+\infty} U(x)$. It means that the particle is trapped in the potential and can not escape.
(a) (0.5p) Justify (in words) that for bound states $\lim _{x \rightarrow-\infty} \psi(x)=0$ and $\lim _{x \rightarrow+\infty} \psi(x)=0$.
(b) (1p) Show that the Hamiltonian $\mathcal{H}=-\frac{d^{2}}{d x^{2}}+U(x)$ is an Hermitian operator. That is, show that $\langle\mathcal{H} f, g\rangle=\langle f, \mathcal{H} g\rangle$ for any square integrable functions $f$ and $g$ vanishing at infinity.
(c) (2.5) Let $\psi_{1}$ and $\psi_{2}$ be two bound-state solutions of the Schrödinger equation with energies $\epsilon_{1}$ and $\epsilon_{2}$ respectively. For real, but otherwise arbitrary $a, b$, show that:

$$
\begin{equation*}
\left[W\left(\psi_{1}, \psi_{2}\right)\right]_{a}^{b}=\left(\epsilon_{1}-\epsilon_{2}\right) \int_{a}^{b} \psi_{1}(x) \psi_{2}(x) d x \tag{1}
\end{equation*}
$$

where $W\left(\psi_{1}, \psi_{2}\right)$ is the Wronskian of $\psi_{1}$ and $\psi_{2}$.
(d) (1p) Show that for one-dimensional potentials, bound states can not be degenerate. This means that if two wave functions describe states with the same energy then they are proportional.
7. The set of polynomials $f_{n}(x)$ of degree $n \geq 0$ satisfy the following differential equation

$$
\left(x^{2}-4\right) y^{\prime \prime}(x)+3 x y^{\prime}(x)-n(n+2) y(x)=0 .
$$

It is given that these polynomials have the following generating function $g(x, t)=\frac{1}{1-x t+t^{2}}$.
(a) (1p) Determine $f_{0}(x), f_{1}(x)$ and derive the recursion relation that expresses $f_{n}(x)$ in terms of $f_{n-1}(x)$ and $f_{n-2}(x)$.
(b) (1p) Determine the parity of $f_{n}(x)$ and calculate $f_{n}(2)$.
(c) (1p) Find the factor $w(x)$, such that the differential equation becomes self-adjoint. Exploit the freedom in $w(x)$ so that $w(0)$ is real (answer: $w(x)=\sqrt{4-x^{2}}$ ).
(d) (1p) On which interval are the polynomials $f_{n}(x)$ orthogonal for the weight factor $w(x)$ ? That is, determine $a$ so that $\int_{-a}^{a} w(x) f_{m}(x) f_{n}(x) d x=0$ if $m \neq n$.
(e) (1p) Determine the normalization of the polynomials $f_{n}(x)$ for the weight factor $w(x)$. That is, determine $\int_{-a}^{a} w(x)\left(f_{n}(x)\right)^{2} d x$.

In the exam, you are allowed to use that the following integral, with $-1<t<1$,

$$
\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin ^{2}(\alpha) d \alpha}{\left(1-2 \cos (\alpha) t+t^{2}\right)^{p}}
$$

takes the values $1,\left(1-t^{2}\right)^{-1},\left(1-t^{2}\right)^{-3},\left(1+t^{2}\right)\left(1-t^{2}\right)^{-5}$ for $p=1,2,3,4$ respectively.
I) $f(x)=\left\{\begin{array}{lll}0 & -\pi<x \leq 0 & \text { and } \\ x & 0 \leq x<\pi & f(x+2 \pi)=f(x)\end{array}\right.$
a) Former renes is given by $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$, where $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x$ and

$$
D_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

AWH (19.1-19.3)

$$
P I
$$

$$
\begin{aligned}
& (19.1-19.3), \frac{1}{5} \quad \\
& \text { So: } \left.a_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x=\frac{x}{\pi n} \sin (n x)\right]_{0}^{\pi}
\end{aligned}
$$

$$
\left.=\frac{1}{\pi n^{2}} \cos (n x)\right]_{0}^{\pi}=\frac{1}{\pi n^{2}}[\cos (\pi n)-\cos (0)]
$$

$$
\text { gives oo } \quad-\frac{1}{\pi n} \int_{0}^{\pi} \sin (n x) d x
$$

$$
=\frac{1}{\pi n^{2}}\left[(-1)^{n}-1\right]=\left\{\begin{array}{cc}
0 & \text { n even } \\
-\frac{2}{\pi} n^{2} & \text { nod } .
\end{array}\right.
$$

$$
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{1}{2 \pi} x^{2} \int_{0}^{\pi}=\frac{\pi}{2}
$$

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x=-\left.\frac{1}{\pi n}(x \cos n x)\right|_{0} ^{\pi}+\frac{1}{\pi n} \int_{0}^{\pi} \cos (n x) d x
$$

$$
=\frac{-1}{x n^{2}} \cos (\pi n)+\underbrace{\left.\frac{1}{\pi n^{2}} \sin (n x)\right]_{0}^{\pi}}_{=0}=\underbrace{\frac{(-1)^{n+1}}{n}}_{\infty}
$$

So: $f(x)=\frac{\pi}{4}+\sum_{h=1}^{\infty} \frac{-2}{\pi(2 k-1)^{2}} \cos ((2 k-1) x)+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)$
b) Evaluate $f(x)$ at $x=0$; this gives

$$
f(0)=0=\frac{\pi}{4}+\sum_{k=1}^{\infty} \frac{-2}{\pi(2 l-1)^{2}} \Rightarrow \sum_{k=1}^{\infty} \frac{1}{(2 l-1)^{2}}=\frac{\pi^{2}}{8}
$$

Alternative: use contours integration (mach longer!).
2) Calculate $I=\int_{0}^{\infty} \frac{x \sin x d x}{x^{2}+a^{2}}$, for $a \in \mathbb{R}$. Lets assume that $a>0$.
Integrant is even, so we wite $I=\frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x d x}{x^{2}+a^{2}}$,

$$
a r=\frac{1}{2} \operatorname{Im} \int_{-\infty}^{\infty} \frac{x e^{i x}}{x^{2}+a^{2}} d x
$$

Now. $\frac{Z e^{i z}}{z^{2}+a^{2}}$ is anolytio in UHP, capant from ore pole at ia)
$\lim _{(z \rightarrow \infty} x / z^{2}+a^{2}=0$ in $U+1 P$, so we can use Jordan's henna:
Contour C:


$$
\begin{aligned}
& \int_{c_{2}} \frac{z e^{i z}}{z^{2}+a^{2}} d z=0 \\
d z= & \frac{1}{2} \operatorname{Im}\left[2 \pi i \operatorname{Res} \frac{z e^{i z}}{z^{2}++i a}\right]
\end{aligned}
$$

Thus: $I=\frac{1}{2} \operatorname{Im} \oint_{c} \frac{z e^{i z}}{z^{2}+a^{2}} d z=\frac{1}{2} \operatorname{Im}\left[2 \pi i \operatorname{Res}_{z=+i a} \frac{z e^{i z}}{z^{2}+a^{2}}\right]$
Residue of $\frac{z e^{i z}}{z^{2}+a^{2}}$ is $\frac{(z-i a) z e^{i t}}{(a+z=i a))^{z i a}} \frac{i a e^{-a}}{2 i a)(z+i a)}=\frac{e^{-a}}{2}$
So: $I=\frac{1}{2} \operatorname{Im}\left(\frac{2 \pi i}{2} e^{-a}\right)=\frac{\pi}{2} e^{-a}$, where $a 2^{\circ}$.
The integral is the came for $a$ and $-a$, no for $a \neq 0$, we have: $I=\frac{\pi}{2} e^{-|a|}$.
For $a=0: I=\int_{0}^{\infty} \frac{\sin x}{x} d x$, which is the Dimskitex neral, asusenin class, and has the calve $\frac{\pi}{2}$.
So, for arbitrary $a \in R$, we have $I=\frac{\pi}{2} e^{-|a|}$.
On: $a=0$ Cage: view $a^{2}$ tams as a comerging factors and tale a 30 limit.
3) ODE is: $x y^{\prime \prime}(x)+(3-x) y^{\prime}(x)-y(x)=0$.
a) Wrike $y^{\prime \prime}(x)+\left(\frac{3}{x}-1\right) y^{\prime}(x)-\frac{y(x)}{x}=0$, so we have a regulan simgular point af $x=0$, beause $P(x)=\frac{3}{x-1}$ and $Q(x)=\frac{1}{x}$ drense at $x=0$, but $x P(x)$ and $x^{2} Q(x)$ are firmile at $x=0$.
Fas w, we substixute $x=\frac{1}{z}$, and we should considen $\frac{2 z-P(1 / z)}{z^{2}}$ and $\frac{Q(1 / z)}{z^{4}}$ at $z=0 \quad(7.22+f$ fllowing
$\frac{2 z-(3 z-1)}{t^{2}}$ diverges at $z=0$, faster than $1, z$, no we have an inesular ingular point at $x \rightarrow \infty$.
b) Froberines methad. vebstitake $y(x)=\sum_{k=0}^{\infty} a_{k} x^{l+a}$ ia $a_{0}$.

$$
y^{\prime}(x)=\sum_{k=0}^{\infty} a_{k}(h+\alpha) x^{k+\alpha-1} ; g^{\prime \prime}(x)=\sum_{k=0}^{\infty} a_{k}(h+\alpha)(h+\alpha-1)^{k+x-2} .
$$

This gwes.

$$
\begin{array}{r}
\sum_{h=0}^{\infty} a_{h}(h+x)(h+x-1) x^{h+x-1}+3 \sum_{h=0}^{\infty} a_{h}(h+\alpha) x^{h+k-1} \\
\\
\left.-\sum_{h=0}^{\infty} a_{h}(h+x) x^{h+k}-\sum_{h=0}^{\infty} a_{h}\right) x^{h+k}=0
\end{array}
$$

howerst pouen of $x$ : occussfor $h=0$, is $x^{\alpha-1}$.
Seffirent: $a_{0}(k+\alpha)(\alpha-1)+3 a_{0} \alpha=0$
So, as $a_{0} \neq 0$, we have $\alpha^{2}-\alpha+3 \alpha=\alpha(x+2)=0$

$$
\Rightarrow x=0 \text { or } x=-2 \text {. }
$$

$[$ Stant with $a=0]$
Gen. veursiar relation:

$$
\left.\sum_{h=0}^{\infty} a_{h}(h+x)(h+\alpha+2) x^{h+\alpha-1} * \sum_{h=0}^{\infty} a_{h}(h+\alpha+1)^{n d}+\operatorname{tem}\right) \quad\left(3^{2 d}, 4^{2 h}+\operatorname{th}\right), 0
$$

Rewrite lastem:

$$
\begin{aligned}
& \text { Rewrite lastem: } \\
& \sum_{h=0}^{\infty} a_{h}(h+\alpha)(h+\alpha+2) x^{h+\alpha-1}-\sum_{h=1}^{\infty} a_{h-1}(h+\alpha) x^{h+\alpha-1}=0
\end{aligned}
$$

So wehave: $a_{l}(\mu+\alpha)(h+\alpha+2)=a_{l-1}(h+\alpha)$
luse $\alpha=0$ first: $h+x=h$ is neon reso.

$$
\begin{aligned}
& \Rightarrow d_{k}=\frac{a_{k-1}}{h+2} \text {; ho } a_{1}=\frac{a_{0}}{3} ; \quad a_{2}=\frac{a_{0}}{43} \text {, } \\
& a_{3}=\frac{a_{0}}{5 \cdot 4 \cdot 3}, \text { or } a_{h}=\frac{2 a_{0}}{(u+2)!} \\
& \text { So }\left(\operatorname{sex} a_{0}=\frac{1}{2}\right), y(x)=\sum_{h=0}^{\infty} \frac{x^{h}}{(h+2)!}=\frac{1}{x^{2}} \sum_{h=0}^{\infty} \frac{x^{h+2}}{(h+2)!} \\
& =\frac{1}{x^{2}}\left(\sum_{h=0}^{\infty} \frac{x^{h}}{h^{h}!}-1-x\right)=\frac{1}{x^{2}}\left(e^{x}-1-x\right)
\end{aligned}
$$

Now: un $x=-2$. Then: $a_{1}(1-2)(1-2+2)=a_{0}(1-2)$

$$
s a_{1}=a_{0} \text {. }
$$

$a_{2} \cdot(0)(2)=a_{1} \cdot(0)$, so $a_{2}$ is not deteminided, so we ecansel ix te weso! Tlus $a_{3}=a_{4}=\ldots=0$ as wed.
Thus: $g(x)=\frac{1}{x^{2}}+\frac{1}{x}$. We con wirke gen, orlution as

$$
y(x)=c_{1} e^{x}+c_{2}\left(\frac{1}{x^{2}}+\frac{1}{x}\right)
$$

4: a) We withe $u(2, t)=R(2) T(t)$, and substitukim $\frac{1}{v^{2}} \frac{\partial^{2} u^{2}}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{2} \frac{\partial u}{\partial \tau}$, which gives

$$
\begin{aligned}
& \frac{1}{V^{2}} R(2) T^{\prime \prime}(t)=T(t)\left[R^{\prime \prime}(2)+\frac{1}{r} R^{\prime}(2)\right], \Omega \\
& \frac{1}{v^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=\frac{R^{\prime \prime}(2)}{R(2)}+\frac{1}{r R(2)} R^{\prime}(2) \text {, which has to }
\end{aligned}
$$

be constant (LHSfunction of $t$, RHS function of 2 ).
We expect ore solutions, to sex $\frac{1}{V^{2}} \frac{T^{\prime \prime}(t)}{\pi(t)}=-\lambda^{2}$ and

$$
\frac{R^{\prime \prime}(2)}{R(2)}+\frac{1}{r} R(R) R^{\prime}(2)=-\lambda^{2} .
$$

Solve eq n fr $T(t)$; $T^{\prime \prime}(t)=-\lambda^{2} v^{2} T(t)$, no

$$
T(t)=A \cos (\lambda v t)+B \sin (\lambda \cdot t)
$$

The eq" fin $R(2)$ becomes: $r^{2} R^{\prime \prime}(2)+r R^{\prime}(2)+\lambda^{2} r^{2} R(2)=0$;
(kcal ewe ${ }^{2}$ )
The rolutionsane Berselfinctions $J_{0}(\lambda), Y_{0}(\lambda .2)$, bul $Y_{0}(\lambda .2)$ in not regularax $r=0$, o we need $R(2)=J_{0}(1,2)$.
We need to satisfy $u(a, t)=0$, wo weed $R(a)=J_{0}(\lambda a)=0$, $\alpha_{m \text {, }}$ is the $m^{\text {th }}$ ness of $J_{0}(x)$, se we have $\lambda a=\alpha_{m}$, $s_{0}$ That we have the volution $R(2)=\sum_{m=1}^{\infty} c_{m} J_{0}\left(\frac{a_{m}{ }^{2}}{a}\right)$.

Combining the volutions $f_{0} T(t)$ and $R(2)$ we have.

$$
\begin{aligned}
u(2, t)=\sum_{m=1}^{\infty} J_{0}\left(\frac{\alpha_{m} r}{a}\right) & {\left[A_{m} \cos \left(\frac{\alpha_{m} v t}{a}\right)\right.} \\
& \left.+B_{m} \sin \left(\frac{\alpha_{m} v t}{a}\right)\right]
\end{aligned}
$$

b) We alsolrue $U(2,0)=J_{0}\left(\alpha_{2,0}, / a\right)$

$$
\begin{aligned}
& \text { and }\left.\frac{\partial u(2, t)}{\partial t}\right|_{t=0}=0 \\
& \frac{\partial u(2, t)}{\partial t}=\sum_{m=1}^{\infty} J_{0}\left(\frac{\alpha_{m}{ }^{2}}{a}\right)\left(\frac{\alpha_{m} v}{a}\right)\left[-A_{m} \sin \left(\frac{\alpha_{m} v t}{a}\right)\right. \\
& \left.+B_{m} \cos \left(\frac{\alpha_{m} v t}{a}\right)\right] \\
& \left.\frac{\partial u(2, t)}{\partial t}\right|_{t=0}=\sum_{m=1}^{\infty} J_{0}\left(\frac{\alpha_{m} r}{a}\right)\left(\frac{\alpha_{m} v}{a}\right) B_{m}=0 \\
& \quad \Rightarrow B_{m}=0
\end{aligned}
$$

$T \ln s u(2,0)=\sum_{m=1}^{\infty} J_{0}\left(\frac{\alpha_{m}^{2}}{a}\right) A_{m}=J_{0}\left(\frac{\alpha_{2,0} 0^{2}}{a}\right), D_{0}$

$$
A_{2}=1, A_{m}=0 \quad m \neq 2 \text {. (usingoothogmatity. }
$$

Thusgioes

$$
u(2, t)=J_{0}\left(\frac{\alpha_{2,0}, * 2}{a}\right) \cos \left(\frac{\alpha_{2} 2 \cdot v t}{a}\right)
$$

5 a) The EOM are:

$$
\begin{aligned}
& \ddot{x}(t)+\alpha(x(t)+\beta(x(t)-y(t))=0 \\
& y(t)+\alpha x(t)-\beta(x(t)-y(t))=0 \\
& x(0)=y(0)=0 \\
& x(0)=V_{j} \dot{y}(0)=0
\end{aligned}
$$

Us Laplace trans form te fund the solution:

$$
\begin{aligned}
\mathcal{L}(x(t)) & =X(s) ; \mathcal{L}(y(t)) ; Y(s) \\
\mathcal{L}(x(t)) & =s^{2} X(s)-s x(0)-x(0) \\
& =s^{2} X(s)-V \\
\mathcal{L}(y(t)) & =s^{2} Y(s)-s y(0)-\dot{y}(0)=s^{2} Y(s)
\end{aligned}
$$

So we get $s^{2} X(s)+\alpha X(s)+\beta X(s)-\beta Y(s)-V=0$

$$
s^{2} Y(s)+\alpha Y(s)+\beta Y(s)-\beta(X(s))=0
$$

Added's: $s^{2}(X(s)+Y(s))+\alpha(X(s)+Y(s))=V$
subthat $s^{2}(X(s)-Y(s))+\alpha(X(s)-Y(s))+2 \beta(X(s)-Y(s))=r$
So $X(s)+Y(s)=\frac{V}{s^{2}+\alpha} ; \quad X(s)-\gamma(s)=\frac{V}{s^{2}+\alpha+2 \beta}$
 $X(s)+Y(s)=V_{c}(\sqrt{k+2 \beta} t)$
Solution
$X(s)=\frac{x}{2}\left[\cos ^{2}((\alpha+t)+\right.$

The immerse gives tim function 20.135:

$$
\begin{aligned}
& X(s)+Y(s)=\frac{V}{\sqrt{\alpha}} \sin (\sqrt{\alpha} t) \\
& X(s)-Y(s)=\frac{V}{\sqrt{x+2 \beta}} \sin (\sqrt{\alpha+2 \beta} t), \sigma \\
& x(t) X(s)= \frac{V}{2}\left[\frac{\sin \sqrt{\alpha} t}{\sqrt{\alpha}}+\frac{\sin \sqrt{\alpha+2 \beta}+}{\sqrt{\alpha+2 \beta}}\right] \\
& X(t) X(s)=\frac{V}{2}\left[\frac{\sin \sqrt{\alpha} t}{\sqrt{\alpha}}-\frac{\sin \sqrt{\alpha+2 \beta} t}{\sqrt{\alpha+2 \beta}}\right]
\end{aligned}
$$

b) $x(t)=\frac{V}{2}[\cos \sqrt{\alpha} t+\cos \sqrt{\alpha+2 \beta} t]$
$x(0)=V$, so it system comesbuch to $t=0$ conf. at lobe, times, we need $\cos (\sqrt{\alpha} t)=\cos (\sqrt{\alpha+2 \beta} t)=1$, o $\sqrt{\alpha} t=2 \pi h, \sqrt{\alpha-1 \alpha} t=2 \pi h^{\prime k}$, which ines $\frac{\sqrt{\alpha}}{\sqrt{\alpha+2 \beta}}=h / h^{\prime}$, or this does not happen for generic parameters $\alpha$ and $\beta$.

* with $l, h^{\prime} \in \mathbb{Z}$

6 a) The particle can not escape te $\pm$ affinity, so the amplitude for the particle being there should peters. so, which means that $\lim _{(x) \rightarrow \infty}+(x)=0$.
b)
$f(x), g(x)$ sam be taken rah, then

$$
\begin{aligned}
& 2 H f, g)=\int_{-\infty}^{\infty}\left(-\frac{d^{2}}{d x^{2}} f+u(x) f(x)\right) g(x) d x \\
& \left.=\int_{-\infty}^{\infty} f(x) u(x) g(x)+\left[-\left(\frac{d}{d x} f(x)\right) g(x)\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty}\left(\frac{d}{d x} f(x)\right) \frac{d}{d x} g(x)\right) \\
& d x \\
& =\int_{-\infty}^{\infty} f(x) u(x) g(x)+\left[f(x) \frac{d^{2}}{d x^{2}} g(x)\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} f(x) \frac{d^{2}}{d x^{2}} g(x) d x \\
& =\left\langle f_{1} \forall \| g\right\rangle
\end{aligned}
$$

c) We have $-\psi_{1}^{\prime \prime}+\mu \psi_{1}=\varepsilon_{1} \psi_{1} j-\psi_{2}^{\prime \prime}+u \psi_{2}=\varepsilon_{2} \psi_{2}$.

Wranshion: $W=\psi_{1} \psi_{2}^{\prime}-\psi_{1}^{\prime} \psi_{2}^{\prime}$, se $W^{\prime}=\psi_{1}^{\prime} \psi_{2}^{\prime}+\psi_{1} \psi_{2}^{\prime \prime}$

$$
=\psi_{1} \psi_{2}^{\prime \prime}-\psi_{1}^{\prime \prime} \psi_{2}^{\prime}-\psi_{1}^{\prime \prime} \psi_{2} .
$$

Use Solnodimgeneqn:

$$
W^{\prime}=\psi_{1}\left(u-\varepsilon_{2}\right) \psi_{2}-\left(u-\varepsilon_{1}\right) \psi_{1} \psi_{2}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \psi_{1} \psi_{2}
$$

Integrate between $a, b$ :

$$
\left.W\left(\psi_{1}, \psi_{2}\right)\right]_{a}^{b}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \int_{a}^{b} \psi_{1}(x) \psi_{2}(x) d x .
$$

d) The relation'm of holes for antitrang $a, b$. Sop if $\varepsilon_{1}=\varepsilon_{2}$, this means than' $w$ is Identically wen. If $N=0$, then $\psi_{1}$ and $\psi_{2}$ are not Sim, midependenx!

7 a) Use the gineatimy function:

$$
\begin{aligned}
& g(x, t)=\sum_{n=0}^{\infty} f_{n}(x) t^{n}=\frac{1}{1-x++t^{2}} \\
& \frac{1}{1-x t+t^{2}}=\frac{1}{1-\left(x+-t^{2}\right)}=1+\left(x t-t^{2}\right)+\left(x t-t^{2}\right)^{2}+h o t \\
&\left.=1+x t+\left(x^{2}-1\right) t^{2}+\phi t^{3}\right), x \\
&\left.f_{0}(x)=1 ; f_{1}(x)=x, f_{2}(x)=x^{2}-1 \quad \text { (last one not ashed } f o r\right) .
\end{aligned}
$$

To get recession, take dematie w $2 t$, $t$ :

$$
\frac{\partial}{\partial t} g(x, t)=\frac{-1}{\left(1-x t+1 t^{2}\right)^{2}}(-x+2 t)=\sum_{n=0}^{\infty} n f_{n}(x) t^{n-1}
$$

S, we get $\frac{(x-2 t)}{\left(1-x+t t^{2}\right)}=\left(1-x t+t^{2}\right) \sum_{n=0}^{\infty} n f_{n}(x) t^{n-1}, 0 \Omega$

$$
(x-2 t) \sum_{n=0}^{\infty} f_{n}(x) t^{n}=\left(1-x t+t^{2}\right) \sum_{n=0}^{\infty} n f_{n}(x) t^{n-1}
$$

$\begin{aligned} & \text { Thus } \sum_{n=0}^{\infty} x f_{n}(x) t^{n}-2 \sum_{n=0}^{\infty} f_{n}(x) t^{n} \\ &+x \sum_{n=0}^{\infty} n f^{2^{n d}}\end{aligned}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x(n+1) f_{n}(x) t^{n}+\sum_{n=1}^{\infty}\left[-2 f_{n-1}^{n}(k)-(n-1) f_{n-1}(x)\right] t^{n}-\sum_{n=-1}^{\infty}(n+1) f_{n+1}(x) t^{n} \\
& 2^{n d} 5^{n} \\
&=0
\end{aligned}
$$

So, the genie coff of $t^{n}$ is: $(n+1) \times f_{n}(-1)-(n+1) f_{n-1}(x)$

$$
\begin{array}{r}
f_{n+1}(x)=x f_{n}(x)-f_{n-1}(x), o z \\
f_{n}(x)=x f_{n-1}(1)-f_{n-2}(x)
\end{array}
$$

$$
-(n+1) f_{n+1}(x)=0
$$

b) Parity of $f_{0}$ is +1, of $f_{1}(x)=-1, f_{2}(x)=+1$.

One canshow that $f_{n}(x)$ is even fan nevers, and ord for $n$ odd using induction, Wi recursion.
$O_{2}, g(-x,-t)=\sum_{n=0}^{\infty} f_{n}(-x)(-1)^{n} t^{n}$

$$
\begin{aligned}
& g(x, t)=\sum_{n} f_{n}(x) t^{n} \text {, so } f_{n}(-x)=(-1)^{n} f_{n}(x) . \\
& f_{0}(2)=1 ; f_{\phi}(2)=2 ; f_{2}(2)=4^{2}-1=3 .
\end{aligned}
$$

So, sersume $f_{p}(2)=p+1$ up to $f_{\text {an }}!3, \ldots, n$
Than $f_{n+1}(2)=2 f_{n}(2)-f_{n-1}(2)$

$$
=2(n+1)-n=n+2 .
$$

By motion, itfollowis that $f_{n}(2)=n+1$ far all $n$.
c) $W(x)$ is prop, to

$$
\begin{aligned}
& \int^{x} \frac{p_{1}(y)}{p_{0}(y)} d y=\int^{x} \frac{3 y d y}{y^{2}-4}=\frac{3}{2} \int^{x} \frac{2 y}{y^{2}-4} d y=\frac{3}{2} \log \left(y^{2}-4\right) \\
& =\log \left(y^{2}-4\right)^{3 / 2}, x_{0} \\
& \frac{1}{p_{0}} e^{\int^{1} \frac{p_{1}(y)}{p_{2}(y)} d y}=\frac{\left(y^{2}-4\right)^{3 / 2}}{x^{2}-4}=\sqrt{x^{2}-4}
\end{aligned}
$$

We vane wax) to be real for $x=0$, so we sex $w(x)=\sqrt{4-x^{2}}$.
d) We lave a Stum-Lioirithe proplem, with weight foutar $W(x)=\sqrt{4-x^{2}}$,
The oithasonativg of 5 L. solutroms nays thax

$$
\begin{equation*}
\left(\lambda_{u}-\lambda_{v}\right) \int_{a}^{b} v^{\alpha}(x) u(x) w(x) d x=\left[w(x) p_{0}(x)\left(v^{k} u^{\prime}-(v)^{\prime} u\right)\right]_{a}^{b} \tag{8.20}
\end{equation*}
$$

where $U(x)$ and $V(x)$ ane rolutions wi engemaluas
$\lambda_{u}$ and $\lambda_{v}$. thene, $\lambda_{n}=n(n+2)$, of for $n \neq m$, we
have that $\int_{a}^{b} f_{m}(x) f_{n}(x) w(x) d x=\frac{1}{\left(\lambda_{m}-\lambda_{n}\right)}[m(x) p(x)$

$$
\left.\left(f_{m}^{\prime} f_{n}-f_{m} f_{n}\right)\right]_{a}^{b}
$$

Berase $W(x)$ is renofor $x= \pm 2$, wh have

$$
\int_{-2}^{2} m(x) f_{m}(x) f_{n}(x) d x=0 \text { if } m \neq n
$$

e) The tribis to square the ginesalimy functix and -mxagate it azainat $m(x)$.

$$
\begin{aligned}
\int_{-2}^{2} \frac{\sqrt{4_{1}^{2}-x^{2}} d x}{(1-x+t)^{2}} & =\sum_{m, n} \int_{-2}^{2} w(x) f_{n}(x) f_{\text {pm }}(x) t^{n+m} d x \\
& \left.=\sum_{m}^{n} \int_{-2}^{2} w x\right)\left[f_{m}(x)\right]^{2 m} d x \\
& \text { oxkernadiug }
\end{aligned}
$$

Th the LHS, sex $x=2 \cos \alpha$, so $d x=-2 \sin \alpha d \alpha$.

$$
\begin{array}{rl}
x & x ; 0 \rightarrow x=2 ; \alpha=\pi \rightarrow x=-2 \quad \sqrt{4-x^{2}}=2|\sin \alpha| \\
& =2 \sin x \\
-\int_{\pi}^{0} \frac{4 \sin ^{2} \alpha d x}{\left(1-2 \cos \alpha t+x^{2}\right)^{2}} & =2 \pi /\left(1-t^{2}\right)=2 \pi \sum_{n=0}^{\infty} t^{2 n} \quad(\sin \pi \pi)
\end{array}
$$

IX follows that

$$
\int_{-2}^{2} m(x) f_{n}^{2}(x) \frac{d x}{=} 2 \pi \quad f_{n} n \geqslant 0 .
$$

Note: the exam tuned cut to be too long. (soses were rescaled).

